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We show that stochastic annealing can be successfully applied to gain new results on the probabilistic
traveling salesman problem. The probabilistic ‘‘traveling salesman’’ must decide on ana priori order in which
to visit n cities ~randomly distributed over a unit square! beforelearning that some cities can be omitted. We

find the optimized average length of the pruned tour followsE(L̄pruned)5Anp(0.87220.105p) f (np), wherep
is the probability of a city needing to be visited, andf (np)→1 asnp→`. The average length of thea priori
tour ~before omitting any cities! is found to follow E(La priori)5An/pb(p), where b(p)51/@1.25
20.82 ln(p)# is measured for 0.05<p<0.6. Scaling arguments and indirect measurements suggest thatb(p)
tends towards a constant forp,0.03. Our stochastic annealing algorithm is based on limited sampling of the
pruned tour lengths, exploiting the sampling error to provide the analog of thermal fluctuations in simulated
~thermal! annealing. The method has general application to the optimization of functions whose cost to evalu-
ate rises with the precision required.
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I. INTRODUCTION

Many real systems present problems of stochastic opt
zation. These include communications networks, protein
sign @1#, and oil field models@2#, in all of which uncertainty
plays a central role. We will consider the case where
outcomeg(x,v) depends not only on parametersx to be
chosen, but also on unknownsv. We can only average with
respect to these unknowns, aiming to find the ‘‘solution’x
which optimizes the average outcome. Thus we seek to
xPX which minimizes

ḡ~x!5E g~x,v! f ~v!dv, ~1!

whereX is the solution space of the problem andf (v) is the
probability distribution of the uncertain variables.

Stochastic optimization was born out of an idea by Ro
bins and Monro@3#. They considered solving the problem
finding

G~x!5a, ~2!

*Email address: Neill.Bowler@physics.org;
URL: http://uk.geocities.com/neill_bowler

†Email address: tmf20@cam.ac.uk;
URL: http://www.tcm.phy.cam.ac.uk/;tmf20/

‡Email address: r.c.ball@warwick.ac.uk;
URL: http://www.phys.warwick.ac.uk/theory/
1063-651X/2003/68~3!/036703~7!/$20.00 68 0367
i-
e-

e

d

-

whereG is some monotonic function ofx anda is a param-
eter. G is not known directly, but can only be estimate
Their technique to solve this problem is called stochas
approximation, and a number of variants of this scheme h
since been developed@4–7#.

For function minimization where the function must b
estimated and may have multiple minima, the term stocha
optimization is used. This term has sometimes been used
certain heuristic algorithms applied to normal optimizati
problems, but here it is used exclusively to describe the
timization of a function which must be estimated.

In this paper our focus is on heuristic approaches to
solution of stochastic optimization problems, since these
the appropriate tool for the solution of NP-complete pro
lems, such as the~PTSP! @8#. A number of heuristics already
exist to tackle stochastic optimization problems@9–13#.
Many of these are developments from simulated annea
@14–17#, which has itself been shown@18# to solve stochas-
tic optimization problems with probability 1, providedḡ(x)
can be estimated with precision greater thanO(t2g) for time
step t, whereg.1. A number of authors@15–17,19# have
used a modified simulated annealing algorithm in which
acceptance probability is modified to take some accoun
the precision of the estimates ofḡ(x), and in these case
there are a number of convergence results@19,17#. Ceperley
and Dewing@20# have developed a penalty method for sim
lated annealing which permits exact simulation of a therm
system, where the errors of the estimation ofḡ(x) are as-
sumed to be Gaussian.
©2003 The American Physical Society03-1
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FIG. 1. Typical near optimala priori PTSP tours withn5300 for p50.5 ~left! andp50.1 ~right!, respectively.
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Stochastic annealing@1# is a more general approach whic
allows the simulation of thermal equilibrium even if the di

tribution of errors in the estimation ofḡ(x) is not known. In
this technique the noise present in the estimates is positi
exploited as mimicking thermal noise in a slow cooling,
opposed to being regarded as something whose influe
should be minimized from the outset. It is a simplification
this method which we use to approximately solve the PT

We estimateḡ(x) by taking r repeated, statistically inde
pendent, measurements ofg(x,v), each of which we call an
instance. All moves for which one estimate~based onr in-
stances! for a new state is more favorable than an equival
estimate for the old are accepted. This simple procedure d
not exactly simulate a thermal system, where the accepta
probabilities should obey

PA→B

PB→A
5e2bDm, ~3!

where b51/kBT and Dm is the exact difference inḡ(x)
between statesA and B. However, if we assume that ou

estimate ofDm is Gaussian distributed aroundḡ(x) with
standard deviations/Ar , wherer is the number of instance
used for each estimate, then it follows that the accepta
probability is @1#

PA→B
G 5

1

2 F12erfS ArDm

A2s
D G . ~4!

The approximation to a thermal acceptance rule is then q
good since
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lnS PA→B

PB→A
D5 lnS 12erfS ArDm

A2s
D

11erfS ArDm

A2s
D D

.2bGDm2
42p

48
~bGDm!32•••, ~5!

where

bG5
A8r

Aps
~6!

identifies the equivalent effective temperature. The small
efficient (.0.02) of the cubic term in Eq.~5! makes this a
rather good approximation to true thermal selection.

Increasing the sample sizer means that we are more strin
gent about not accepting moves that are unfavorable, equ
lent to lowering the temperature, which is quantified by E
~6! for the Gaussian case. As with standard simulated ann
ing @21–23#, the question of precisely what cooling schedu
to use remains something of an art.

II. PROBABILISTIC TRAVELING SALESMAN PROBLEM

We adopt the PTSP as a good test bed amongst stoch
optimization problems, in much the same way as the trav
ing salesman problem~TSP! has been considered a standa
amongst deterministic optimization problems. The PT
falls into the class of NP-complete problems@8#, and the TSP
is a subset of the PTSP.

The original traveling salesman problem is to find t
shortest tour aroundn cities, in which each city is visited
once. For small numbers of cities this is an easy task, but
problem is NP complete: it is believed for largen that there
is no algorithm which can solve the problem in a time po
3-2
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nomial inn. Consideration of the traveling salesman proble
began with Beardwoodet al. @24#. They showed that in the
limit of large numbers of cities which are randomly distri
uted on a unit square, the optimal tour lengthLTSP follows
@25#

E~LTSP!5bTSPAn1aTSP, ~7!

wherebTSP and aTSP are constants. Here and belowE(L)
denotes the quantityL averaged, after optimization, with re
spect to different city positions, randomly placed on a u
square. Numerical simulation@26# gives bTSP50.7211(3)
and aTSP50.604(5) as estimates whenn>50. Significant
divergence from this behavior is found forn<10, but nu-
merical estimates can be found quickly~see Table I!.

The probabilistic traveling salesman problem, introduc
by Jaillet @27,28#, is an extension of the traveling salesm
problem to optimization in the face of unknown dat
Whereas all of the cities in the TSP must be visited once
the PTSP each city only needs to be visited with some pr
ability p. One first decides upon the order in which the cit
are to be visited, the ‘‘a priori’’ tour. Subsequently, it is
revealed which cities need to be visited, and those which

FIG. 2. The expected pruned tour length divided by the expec
reoptimized tour length. This indicates the improvement one wo
expect from reoptimization.

TABLE I. The average length of the near-optimal TSP tours
a small number of cities.

Number
of cities n

Number
of instancesI

Average
tour length

s/AI 21

2 100000 1.043 0.002
3 100000 1.564 0.002
4 5000 1.889 0.006
5 5000 2.123 0.006
6 5000 2.311 0.005
7 5000 2.472 0.005
8 5000 2.616 0.005
9 5000 2.740 0.005

10 5000 2.862 0.005
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not need to be visited are skipped to leave a ‘‘pruned tou
The order in which the cities are to be visited is preserv
when pruning superfluous cities. The objective is to cho
an a priori tour which minimizes the average length of th
pruned tour. It is clear from Fig. 1 that near optimala priori
tours may appear very different for different values ofp.

In our terminology, the average pruned tour length is a
eraged over all possible instances of which cities require
be visited. This was given by Jaillet as@27,29#

L̄pruned5 (
q50

n22

p2~12p!qL (q), ~8!

where

L (q)5(
j 51

n

d„j ,11~ j 1q!mod n… ~9!

is the sum of the distances between each city and itsq
11)th following city on thea priori tour, and the factors
p2(12p)q in the preceding equation simply give the pro
ability that any particular span skippingq cities occurs in the
pruned tour. Jaillet’s closed form expression for the aver
pruned tour length renders the PTSP to some extent ac
sible as a standard~but still NP complete! optimization prob-
lem, and provides some check on the PTSP results by
chastic optimization methods.

It has been conjectured@8# that, in the limit of largen, the
PTSP strategy is as good as constructing a TSP tour on
cities requiring a visit, the reoptimization strategy. Th
would mean that

lim
n→`

S E~ L̄pruned!

Anp
D 5bTSP, ~10!

where E(L̄pruned) is the average pruned tour length furth
averaged over city positions after optimization, which w
will refer to as the expected pruned tour length. Figure
shows the expected pruned tour length divided by the
pected reoptimized tour length. Since this quantity is tend
towards a value significantly greater than 1 forp,1 it dem-
onstrates that the PTSP strategy can be worse than the
timization strategy. Jaillet@27# and Bertsimas and Howel
@29# have also shown that there is a limit to how much wo
it can be, with

lim
n→`

S E~ L̄pruned!

Anp
D 5bpruned~p!, ~11!

where

bTSP<bpruned~p!<MinS 0.9212,
bTSP

Ap
D . ~12!

One attempt to solve the PTSP using an exact method
taken by Laporteet al. @30# who introduced the use of inte
ger linear stochastic programming. This study was seve
limited in the size of problem attempted and the stocha

d
d

r
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programming algorithm failed to solve the PTSP on cert
occasions. Thus the accuracy of any statistics generated
ing this method are dubious.

Three studies have used heuristics to solve the P
@31–33#. None of these studies used global search heuris
and all were very restricted in the problem size attemp
due to computational cost. The evaluation of a move for
PTSP using Eq.~8! involves the computation ofO(n2) terms
compared toO(1) computations to evaluate a move in t
TSP. Thus, to solve a 100-city problem for the PTSP wo
take O(10 000) times longer than it would to solve a 10
city problem for the TSP. It should be noted, however, tha
is only possible to make this comparison due to the rela
simplicity of the PTSP. For many more stochastic optimiz
tion problems, standard optimization techniques are sim
not applicable.

III. FORM OF THE OPTIMAL TOUR
AND SCALING ARGUMENTS

Optimala priori PTSP tours for smallp, as exemplified in
Fig. 1 for p50.1, resemble an ‘‘angular sorting’’—wher
cities are visited in an order given by their angle with resp
to the center of the square. Bertsimas@31# proposed that an
angular sorting is optimal asp→0, but we can show this to
be false by comparison to a space-filling curve algorit
which is generally superior asn→`. Such an algorithm was
introduced by Bartholdi and Blatzman@34# using a technique
based on a Sierpinski curve.

For the angular sort withnp@1 only cities that are sepa
rated by a small angle will contribute significantly to Eq.~8!.
For two cities which are separated by a large angle the p
ability that they are adjacent on the pruned tour~i.e., no
cities between them require a visit! is vanishingly small.
Thus for ann-city tour chosen by angular sorting we ma
approximate Eq.~9! by

Lang
(q).Lon, ~13!

whereLo is some fraction of the side of a unit square, sin
cities which are sorted with respect to angle will be unsor
with respect to radial distance. This leads to

E~ L̄ang!.Lonp2(
q50

n22

~12p!q. ~14!

For np@1, we find that the angular sorting yields

E~ L̄ang!→Lonp. ~15!

By contrast it has been shown@29# that

E~ L̄tsf
!

E~ L̄Reopt!
5C, ~16!

with probability 1, whereE(L̄tsf
) is the expected length of

tour generated by a heuristic based on a space-filling cu
approach of Bartholdi and Blatzman@34# and E(L̄Reopt) is
the expected length for the reoptimization strategy. Us
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previous computational results@29,26#, we estimate C
.1.33, which is worse than we achieve using stochastic
nealing. Hence,E(L̄tsf

) is given by

E~ L̄tsf
!5O~Anp!, ~17!

which leads to

E~ L̄tsf
!

E~ L̄ang!
5OS 1

Anp
D . ~18!

So for large enoughnp the angular sorting is not optimal.
From inspection of near-optimal PTSP tours such as F

1, we propose that the tour behaves differently on differ
length scales; the tour being TSP-like at larger length sca
but resembling a locally directed sorting at smaller leng
scales. A locally directed sorting sorts cities according
their distance in a particular direction. We may constru
such a tour and use scaling arguments to analyze both
pruned anda priori lengths of the optimal tour. Conside
dividing a unit square into a series of ‘‘blobs,’’ each blo
containing 1/p cities so that on average one city within ea
blob requires a visit. The number of such blobs is given

N.np, ~19!

and for these to approximately cover the unit square th
typical linear dimensionj must obey

Nj2;1. ~20!

Since a pruned tour will visit each blob once on average,
can estimate the expected pruned tour length to be

E~ L̄pruned!;Nj;Anp, ~21!

which we will see below is verified numerically. We ca
similarly estimate thea priori tour length to ben times the
distance between two cities in the same blob. Thus, the
pecteda priori tour length is

E~La priori !;nj;An

p
, ~22!

which is more difficult to confirm numerically.

IV. COMPUTATIONAL RESULTS FOR THE PTSP

We have investigated near optimal PTSP tours for a ra
of different numbers of cities, and various values ofp. We
used stochastic annealing with effective temperatures in
range 1/bG50.0720.01, corresponding to sample sizes
the ranger 522500. Between 10 and 80 different rando
city configurations were optimized (80 configurations of
cities, 40 configurations of 60 cities, 20 configurations of
cities, and 10 configurations forn>120 cities!.

Figure 3 shows a master curve for the expected pru
tour length divided bybpruned(p)Anp as a function ofnp.
The shift factorsbpruned(p) have been chosen to give the be
3-4
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fit of the data to a single curve. The shift factors vary on
slightly with changingp and appear to have a linear fit. Th
means the expected pruned tour length is given by

E~ L̄pruned!

Anp~a2bp!
5 f ~np!, ~23!

for n@1, where a50.87260.002, b50.10560.005, and
f (np)→1 for largenp. This indicates that the PTSP strate
can be no more than 0.872/0.76721514%(61%) worse
than the reoptimization strategy.

The master curve for thea priori tour length is shown in
Fig. 4. Our scaling arguments predict that the shift fact
ba priori(p) should tend towards a constant forp→0. How-
ever, data are fit very well by the relation

FIG. 3. The master curve for the pruned tour length divided
bpruned(p)Anp. The data follows a smooth curve forn.30, and the
shift factors follow a linear relationship, suggesting th

E(L̄pruned)/Anp(0.87220.105p)5 f (np). Three points withn530
lie significantly above the other data points~here and also in Fig. 4!,
showing breakdown of the master curve at smalln.

FIG. 4. The master curve for thea priori tour length divided by
A(n/p)ba priori(p). The shift factors, inset, are expected to te
towards a constant forp→0. The slight, but significant, deviation
from linear suggests that this might not be the case.
03670
s

ba priori~p!5
1

1.2520.82 ln~p!
, ~24!

which would tend to zero asp→0 in conflict with our scal-
ing arguments. To resolve this dilemma we need to pro
very smallp.

V. THE LIMITING CASE p\0

We are interested in finding whetherba priori(p) tends
towards a constant asp→0. To do this using the above
approach is difficult, since we need a large number of cit
to produce reliable data for this regime. Extraction of th
behavior may be achieved by comparing simulations for d
ferent values ofn, but fixednp. We accomplish this by in-
sisting that each instance has four cities on the pruned tou
city tours are chosen since they are the smallest for whic
matters in which order the cities are visited. This can
viewed as an efficient way to simulate~approximately! the
PTSP strategy withp54/n.

Since we are considering the PTSP at fixednp, if
ba priori(p) tends towards a~nonzero! constant asp→0 then
we expectE(La priori

4 city )/n to tend towards a constant asn
→`. Simulations in this regime were performed forn512
2210, with 100 different random city configurations us
for n,30, 20 configurations forn<90, and 10 configura-
tions for n>120. Figure 5 shows a linear-log plot o
n/2E(La priori

4 city ) against ln(n/4)> ln(1/p). For smalln these
results reasonably match the direct measurements
ba priori(p), shown for comparison. However, for largen
;100 which is beyond the range of ourba priori(p) data, our
earlier proposal of scaling behavior is vindicated
E(La priori

4 city )/n approaching a constant value. In summary
have

y FIG. 5. Reciprocal shift factors fora priori tours ~diamonds!
compared to estimates from 4-city tours~crosses!, 1/ba priori(p)
.n/2E(La priori

4 city ). The 4-city tour data are optimized when each
the instances have 4 cities on the pruned tour. The direct meas
ments do not appear to saturate within the accessible rangep.
The crosses show matching behavior, with saturation at largen
corresponding to inaccessiblep, suggesting thatE(La priori)
5b0A(n/p) for small p.
3-5
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BOWLER, FINK, AND BALL PHYSICAL REVIEW E 68, 036703 ~2003!
lim
n→`

E~La priori !5An

p
ba priori~p!, ~25!

where

ba priori~p!H 5
1

1.2520.82 ln~p!
for p.0.03

5b0 for p,0.03.

~26!

VI. NOTES ON ALGORITHM IMPLEMENTATION

We applied stochastic annealing to the PTSP using a c
bination of the 2-opt and 1-shift move sets@35# established
for the TSP. Both move sets are applied to thea priori tour in
the same way as they are applied for the TSP. The expe
pruned tour length change for the move is estimated by
eraging the change in the tour length for a number of
stances. For a given instance it is not necessary to de
whether every city is present, but only the set of cities clos
to the move which determine the change in the pruned
length~see Fig. 6!. For the PTSP, the location of the neare
cities on the pruned tour to the move is determined from
Poisson distribution.

When using stochastic optimization, the only variab
over which we have control is the sample size~the number
of instances! r, whereas the effective temperatures/Ar
also entails the standard deviations of the pruned length
change over instances. As shown in Fig. 7, annea
by controlling r alone exhibits a relatively sharp transitio
in the expected pruned tour length. The rapid transit
appears to ‘‘freeze in’’ limitations in the tours found~analo-
gous to defects in a physical low temperature phase!. By
comparison we obtain a much smoother change whens/Ar
is controlled.

The sharpness of the transition under control byr is
caused by the fact thats may vary from move to move, an
is on average lower when the expected pruned tour leng
less. The jump in the pruned tour length is accompanied b
jump in s and hence the temperature. We suggest that q
generally controllings/Ar gives a better cooling schedu
than focusing onr alone.

FIG. 6. When estimating the expected length change due
move, we randomly generate instances. Only the cities that
nearest to the move are needed to calculate the change in the p
tour length.
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VII. CONCLUSION

We have shown that earlier incompatible ideas about
form of PTSP, tours especially at smallp @31,8,34#, are re-
solved by a new crossover scaling interpretation. At lar
length scales the tour appears TSP-like, but resemble
locally directed sorting at smaller scales. The crosso
between these two regimes corresponds to a group of c
for which on average one city in this group requires a vis
Our computational results for the pruned tour length
summarized by Eq.~23! and clearly support the crossove
scaling.

Computationally thea priori tour length is more subtle
than the pruned tour length, although it does ultimately c
form to expectations from crossover scaling. We introduc
4-city tours to probe the behavior ofa priori tour length
down to very smallp. As summarized by Eq.~25!, we find a
wide preasymptotic regime until recovering the expec
crossover scaling only forp,0.03. Understanding thes
anomalies in thea priori tour length, and confirming them
analytically, is left as a future challenge.

We have shown stochastic annealing to be a robust
effective stochastic optimization technique, taking the PT
as a representative difficult stochastic optimization proble
In this case it enabled us to obtain representative results
to unprecedented problem sizes, which in turn supporte
whole new view of how the tours behave. Of relevance
wider applications of stochastic optimization, we have se
that smoother annealing can be obtained by directly cont
ling the effective temperatures/Ar @1# rather than simply
the bare depth of samplingr alone.
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FIG. 7. The expected pruned tour length for annealings wher
and 1/T5Ar /s are increased monotonically. The sharp drop in t
pruned tour length is seen when onlyr is controlled, demonstrating
that this ‘‘freezes in’’ imperfections in the tour. The system w
annealed at each value of the temperature and value ofr for 50 000
Monte Carlo steps withn5300 andp50.1.
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